Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 18, 2026
-
Breadfruit (Artocarpus altilis) is an underutilized Pacific tree crop that has been highlighted as having substantial potential to contribute to global food security and climate-smart agriculture, including adaptation to and mitigation of climate change. To explore the carbon sequestration potential of breadfruit production, we characterize tree volume, wood density, carbon density, foliar biomass, and growth rates of breadfruit in Hawai‘i. Strong relationships to trunk or branch diameter were displayed for wood density (r2 0.81), carbon density (r2 0.87), and foliar biomass (r2 0.91), which were combined to generate an allometric prediction of tree volume (r2 0.98) based on tree diameter at breast height. Growth rates, as measured by diameter at breast height, were well predicted over time when trees were classified by habitat suitability. We extrapolate potential breadfruit growth and carbon sequestration in above-ground biomass to the landscape scale over time. This study shows that breadfruit is on the low end of broadleaf tropical trees in moist and wet environments, but in an orchard can be expected to sequester ~69.1 tons of carbon per hectare in its above-ground biomass over a 20-year period.more » « less
-
Abstract Agriculture is one of the most fundamental ways in which human societies interact with the environment. The form and function of agriculture have important socio-political implications in terms of yields, labor requirements, variability and resilience, and elite control. Hawai‘i has been used as a model system for the discussion of coupled human and natural systems, and how the uneven distribution of agricultural opportunities has manifested in the political ecology. However, consideration of agriculture has emphasized forms with physical infrastructure documented through archaeology and have not included arboricultural forms that were extensive among Pacific Islands. We leverage existing, independent data sets to build and validate spatial models of two intensities of arboriculture across the Hawaiian archipelago: Agroforestry and Novel Forest. Model validation demonstrates good accuracy that includes both expected and unexpected sources of errors. Results of the models demonstrate that arboricultural techniques accounted for ~70% of the agricultural potential by area and ~40% of the agricultural potential by yield. Unlike existing agricultural forms modeled, such as flooded wetland terrace cultivation and rainfed field production, which have strong distributional patterns based on the age of the islands, arboricultural potential is well distributed across all the islands. The extent, distribution, and characteristics of arboricultural methods provide important augmentation of the current narrative of production dynamics and distribution, and the political ecology, of pre-contact Hawai‘i.more » « less
-
Most neglected and underutilized crops were developed and utilized within indigenous agroecological cropping systems. While crop suitability must consider the constraints of the environment, the conditions of agroecological systems and the role of crops within those systems should be considered. Such consideration may guide the implementation of appropriate farming systems specific to different ecosystems and microhabitats. Using the Hawaiian archipelago as a model system of socioecological dynamics, we consider the distribution of agroecological systems and their associated crops to explore how agroecological suitability changes across climate, topography, and soils. We conduct spatial modeling of the potential nature and extent of seven agroecological archetypes based on historical records. The seven spatial models of pre-colonial agroecological systems produced extents distributed across much of the Hawaiian archipelago, with clear adaptive patterns within and across the islands. The distribution of cropping system further affects the appropriateness of crop species application. We argue that the consideration of agroecological niches and associated cropping systems is critical for realizing the potential of underutilized crops and improving the efficiency of contemporary agricultural systems.more » « less
An official website of the United States government
